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a b s t r a c t

In two papers published recently in Chemical Engineering Journal, [Y.P. Sun, S.B. Liu, S. Keith, Approximate
solution for the nonlinear model of diffusion and reaction in porous catalysts by decomposition method,
Chem. Eng. J. 102 (2004) 1–10; S. Abbasbandy, Approximate solution for the nonlinear model of diffu-
sion and reaction in porous catalysts by means of the homotopy analysis method, Chem. Eng. J. 136 (2008)
144–150], a nonlinear model of diffusion and reaction in porous catalysts has been investigated by approx-
orous catalyst
iffusion and reaction
th order reaction
hiele modulus
xact solutions
ypergeometric function

imate analytical methods (the Adomian decomposition method, [Y.P. Sun, S.B. Liu, S. Keith, Approximate
solution for the nonlinear model of diffusion and reaction in porous catalysts by decomposition method,
Chem. Eng. J. 102 (2004) 1–10] and the homotopy analysis method, [S. Abbasbandy, Approximate solution
for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis
method, Chem. Eng. J. 136 (2008) 144–150], respectively). The present paper shows, however, that the
model is exactly solvable in terms of Gauss’ hypergeometric function. The exact solution is illustrated by

new
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w

specific examples. Several

. Introduction and problem formulation

The aim of the present paper is to give the exact analytical solu-
ions of a nonlinear diffusion-reaction model investigated in the
ecent literature extensively by different approximation methods
1,2].

The model considered by Sun et al. [1] and Abbasbandy [2]
escribes the steady diffusion-reaction regime in a porous slab with
lane boundaries at X = 0 and X = L, respectively. The concentra-
ion distribution of the reactant, C = C(X) satisfies the differential
quation

e
d2C

dX2
− r(C) = 0 (1)

here the reaction rate per unit volume r is a power law function
f the concentration,

n
= kC (2)

he admitted range of the reaction order is n ≥ −1. The boundary at
= 0 is impermeable (vanishing mass flux) and that at X = L is held

∗ Tel.: +41 61 731 38 46.
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physical features are reported and discussed in detail.
© 2008 Elsevier B.V. All rights reserved.

t a constant concentration CS,

e
dC

dX

∣∣∣
X=0

= 0, C|X=L = CS (3)

n terms of the dimensionless variables

= X

L
, c(x) = C(X)

CS
(4)

he boundary value problems (1)–(3) is specified by equations

d2c

dx2
− �2cn = 0 (5)

dc

dx

∣∣∣
x=0

= 0, c|x=1 = 1 (6)

here � = (kL2Cn−1
S /De)

1/2
denotes the Thiele modulus.

Approximate series solutions of the one-dimensional nonlinear
oundary value problem (5), (6) have been given recently for dif-
erent values of the parameters n and � with the aid of Adomian’s

ecomposition method and the homotopy analysis method by Sun
t al. [1] and by Abbasbandy [2], respectively. The present paper
ives the exact analytical solutions in terms of Gauss’ hypergeomet-
ic function. For a comprehensive review of more general reaction
iffusion problems in porous catalysis, see e.g. Ref. [3].

http://www.sciencedirect.com/science/journal/13858947
mailto:magyari@hbt.arch.ethz.ch
mailto:magyari@bluewin.ch
dx.doi.org/10.1016/j.cej.2008.03.018
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Nomenclature

c dimensionless concentration
C concentration
CS prescribed concentration at X = L
De effective diffusion coefficient
F Gauss’ hypergeometric function
k reaction rate constant
K integration constant
L thickness of porous slab
m n + 1
n reaction order
qM mass flux at X = L
r reaction rate per unit volume
u variable of integration
x dimensionless transversal coordinate
X transversal coordinate

Greek symbols
� Euler’s Gamma function
� = (kL2Cn−1

S /De)
1/2

, Thiele modulus

Subscript/superscript
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both for symbolical and numerical calculations involving the func-
tion F (in the present paper throughout Wolfram’s Mathematica®

has been used). This circumstance facilitates both the analytical and
Prime differentiation with respect to x
0 at the boundary x = 0

. The exact solution for n > −1

One easily sees that Eq. (5) admits the first integral

1
2

(
dc

dx

)2

− �2

m
cm = K (7)

here K is a constant of integration and m = n + 1. Eq. (7) holds for
ll n /= −1. The case n = −1 will be discussed in Section 3.2.

The first boundary condition (6) and Eq. (7) give for the integra-
ion constant K the value

= −�2

m
cm

0 (8)

here c0 = c(0) denotes the (yet unknown) concentration of the
eactant at the impermeable boundary of the porous slab, and rep-
esents one of the quantities of main engineering interest of the
roblem. Thus, Eq. (7) becomes

dc

dx

)2

= 2�2

m
(cm − cm

0 ) (9)

nd yields

= 1
�

(
m

2cm−2
0

)1/2 ∫ c/c0

1

du√
um − 1

(m /= 0) (10)

Using the software package of Mathematica®, the integral in Eq.
10) can be expressed in terms of Gauss’ hypergeometric function
≡ 2F1(a,b; c; z) as follows:

u

1

du√
um − 1

= 2
2 − m

[
u1−m/2 F

(
1
2

− 1
m

,
1
2

;
3
2

− 1
m

; u−m
)

(
1 1 1 3 1

)]

− F

2
−

m
,

2
;

2
−

m
; 1 (11)

For a comprehensive description of the hypergeometric function
, see e.g. [4], Chap. 15. With the aid of Eqs. (15.3.6) and (15.1.8) of

n
s
l
f
n
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ef. [4], Eq. (11) can be transcribed into form

u

1

du√
um − 1

= 2
m

u1−m(um−1)1/2 F
(

1, 1− 1
m

;
3
2

; 1 − u−m
)

(12)

nd thus, the exact solution of the problem is obtained in the
mplicit form

= 1
�

(
2

mcm−2
0

)1/2(
c

c0

)1−m
[(

c

c0

)m

− 1

]1/2

× F

(
1, 1 − 1

m
;

3
2

; 1 −
(

c

c0

)−m
)

(13)

Now, the concentration c0 at the impermeable boundary of the
orous slab can be determined from the exact solution (13) and the
econd boundary condition (6) as solution of the transcendental
quation

1
�

[
2
m

(1 − cm
0 )

]1/2
F
(

1, 1 − 1
m

;
3
2

; 1 − cm
0

)
= 1 (14)

In addition to c0, a further quantity of engineering interest of
he present problem is the mass flux

M = −De
dC

dX

∣∣∣
X=L

= −DeCS

L

dc

dx

∣∣∣
x=1

(15)

hrough the boundary X = L where the constant concentration CS
as prescribed. This ingoing mass flux is necessary in order to
aintain the steady reaction regime during the consumption of the

eactant in the chemical reaction. The dimensionless concentra-
ion gradient dc/dx|x=1 ≡ c′(1) occurring in Eq. (15) is obtained by
ifferentiation of Eq. (13) in the form

′(1) = (m/2)1/2�(
m + 2(1 − m)(1 − cm

0 )/2(1 − cm
0 )1/2F

)
(1, 1 − 1/m; 3/2; 1 − cm

0 )

+(2(1 − m)/3)cm
0 (1 − cm

0 )1/2F(2, 2 − 1/m; 5/2; 1 − cm
0 )

(16)

The equivalent expression of c′(1),

′(1) =
[

1 − m + m

2(1 − cm
0 )

+ 2(1 − m)
3�

cm
0

[
2
m

(1 − cm
0 )

]1/2

× F
(

2, 2 − 1
m

;
5
2

; 1 − cm
0

)]−1

(17)

esults from Eqs. (14) and (16) easily. From geometrical point of
iew, the value of c′(1) represents the slope of the dimensionless
oncentration profile c = c(x) at the boundary x = 1.

. Discussion

The main advantage of the exact analytical solution (13) consists
f the facts that (i) the mathematical properties of the hyperge-
metric function F are well established (see e.g. Ref. [4]) and (ii)
oday, well-performing commercial computer software is available
umerical investigation of the concentration distribution c = c(x)
ubstantially (without to be confronted with the convergence prob-
ems arising in approximation methods). In the following, the
eatures of the solution c = c(x) will be examined for positive and
egative values of the reaction order in the range n ≥ −1.
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Fig. 1. Plot of the concentration c0 at the impermeable wall as function of the
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hiele modulus � for six nonnegative values of the reaction order n. The dots
ark the maximum values �*(n) of � where c0 = 0 when 0 ≤ n < 1. These values

re: �∗(0) =
√

2 = 1.41, �∗(1/3) =
√

6 = 2.45, �∗(1/2) = 2
√

3 = 3.46 and �∗(3/4) =√
14 = 7.48, respectively.

.1. Positive and vanishing reaction orders, n ≥ 0

To get a first insight into the domain of existence of solutions, in
ig. 1 the dependence of the surface concentration c0 = c(0) on the
hiele modulus � has been plotted for six different values of the
eaction order n according to Eq. (14).

An inspection of Fig. 1 emphasizes three remarkable features,
amely:

(i) The surface concentration c0 decreases monotonously with
increasing values of the Thiele modulus for all n ≥ 0.

(ii) The function c0 = c0(�; n) approaches unity for all n ≥ 0 as � → 0.
iii) In the range 0 ≤ n < 1, the curves c0 = c0(�; n) terminate at some

finite values �*(n) of �, where the concentration c0 goes to zero
(while for n > 1, c0 = c0(�; n) approaches zero only as � → ∞). In
other words, the domain of existence of solutions in the range
0 ≤ n < 1 is 0 ≤ � ≤ �*(n).

The property (ii) is a direct consequence of the fact that the
oundary value problem (5) and (6) admits for � = 0 the constant
olution

(x) = 1 (� = 0) (18)

or all n. The existence of the maximum value �*(n) of � where
0 = 0, as mentioned under point (iii), can rigorously be proven by
aking the limit c0 → 0 of the exact analytical results (13) and (14).
n this way, bearing in mind Eq. (15.1.20) of [4], one obtains that

(x) = x2/1−n (19)

s an exact solution of the boundary value problem (5) and (6) when

=
√

2(1 + n)
1 − n

≡ �∗(n) and − 1 < n < 1 (20)

The latter condition (20) ensures that in this case c0 = c(0) = 0.
he results (19) and (20) can also be proven easily by a direct sub-
titution in Eqs. (5) and (6).
For the dimensionless concentration gradient at the boundary
= 1 one obtains in this case from Eq. (17)

′(1) = 2
1 − n

(−1 < n < 1) (21)

c

c

ig. 2. Concentration profiles plotted as functions of the coordinate x, for � = 2 and
ix different values of the reaction order n. The corresponding concentrations at the
mpermeable wall are c0 = 0, 0.277164, 0.340257, 0.408617, 0.581345 and 0.649268,
espectively.

As an illustration, in Fig. 2 the concentration profiles c = c(x)
iven by the exact solution (13) have been plotted for the reac-
ion orders n = 0, 1/3, 1/2, 3/4, 2 and 3 and the same value � =

√
2

f the Thiele modulus. The value � =
√

2 coincides according to
q. (20) with the maximum value �*(n) for n = 0. Accordingly, in
his case one has c(x) = x2 and c0 = 0. For the other reaction orders,
= 1/3, 1/2, 3/4, 2 and 3, the concentrations at the impermeable
all are c0 = 0.277164, 0.340257, 0.408617, 0.581345 and 0.649268,

espectively. For the slopes of the concentration profiles shown
n Fig. 2, Eqs. (19) and (17) yield the values c′(1) = 2 for n = 0 and
′(1) = 1.56776, 1.46198, 1.34476, 1.03507 and 0.906805 for n = 1/3,
/2, 3/4, 2 and 3, respectively. One sees that, the smaller the reaction
rder n, the steeper the concentration profile in the neighborhood
f the boundary x = 1.

Taking into account that

(a, 0; c; z) = 1, (22)

q. (13) gives for n = 0 (i.e. m = 1) the explicit solution

(x) = c0 + �2

2
x2 (n = 0) (23)

Eq. (14) yields for c0 the value

0 = 1 − �2

2
(n = 0) (24)

Therefore, the domain of existence of the solution (23) is 0 ≤
≤ �∗(0) =

√
2, in agreement with Eq. (20) and Fig. 1.

A further case in which the general exact solution (13) reduces to
n elementary form is the case of first order reactions, n = 1, where
he boundary value problem (5) and (6) becomes linear. Bearing in

ind that for n = 1 (i.e. m = 2) one has [4](
1, 1 − 1

m
;

3
2

; 1 −
(

c

c0

)−m
)

= F

(
1,

1
2

;
3
2

; 1 −
(

c0

c

)2
)

= arctanh
√

1 − (c0/c)2√
1 − (c0/c)2

, (25)

q. (13) reduces to � x = arctanh
√

1 − (c0/c)2. In this way, we
ecover the well-known elementary solution
(x) = c0 cosh(� x) (26)

The second boundary condition (6) yields for c0 the value

0 = 1
cosh �

(27)
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Table 1
Special cases of the exact solution for four negative values of the apparent reaction
order in the range −1 < n < 0

n m = n + 1 Eq. (13)

− 1
3

2
3 x =

√
3c

2/3
0

2�

[(
c
c0

)1/3
√(

c
c0

)2/3
− 1 − arccosh

(
c
c0

)1/3
]

− 1
2

1
2 x = 2c

3/4
0

3�

(√
c
c0

− 1
)1/2 (√

c
c0

+ 2
)

− 2 1 c
5/6
0

√
2

√(
c
)1/3

[ (
c
)1/3 (

c
)2/3

]
−

w
b

c

a
−
c

s
h
t
s

c

(
(

c

[
c
t

3

m
a
t
b
t
−
T

s
s
M
i
f

F
m

i

(

c

T

Eq. (5) admits also for n = −1 a first integral which has now the
form

1
2

(
dc

dx

)2

− �2 ln c = K (31)

Table 2
Characteristics of the exact solutions for the cases selected in Table 1 and plotted in
Fig. 3

n �*(n) c*(n) �max(n) c0,crit(n) c(x), Eq. (19)

−1/3
√

3/2 = 0.87 0.562573 1.03895 0.168594 x3/2
3 3 x = 5� 3 c0
− 1 8 + 4 c0

+ 3 c0

3
4

1
4 x = 2

√
2c

7/8
0

35�

√(
c
c0

)1/4
− 1

[
16 + 8

(
c
c0

)1/4
+ 6

(
c
c0

)1/2
+ 5

(
c
c0

)3/4
]

hile the dimensionless mass flux c′(1) = dc/dx|x=1 through the
oundary at x = 1 is obtained from Eq. (16) and (27) as

′(1) = � tanh � (28)

We mention that, in addition to the elementary solutions (19)
nd (26) associated with nonnegative values of n, in the range
1 ≤ n < 0 from the exact solution (13) further elementary solutions

an be obtained (see Section 3.2).
In order to compare the exact solutions (13) to the approximate

eries solutions of Refs. [1] and [2], one has first to expand the right
and side of Eq. (13) in a Taylor series to (c–c0) and then, to invert
his power series to the explicit form c = c(x). Using a the algebra
oftware of Mathematica®, this procedure led us to the result

(x) = c0 + cn
0

(�x)2

2!
+ nc2n−1

0
(�x)4

4!
+ n(4n − 3)c3n−2

0
(�x)6

6!

+ n(34n2 − 63n + 30)c4n−3
0

(�x)8

8!
+ n(496n3 − 1554n2

+ 1689n − 630)c6n−5
0

(�x)10

10!
+ · · · (29)

As expected, for n = 0 one recovers in Eq. (29) the exact solution
23) and for n = 1 the series expansion of the elementary solution
26),

(x) = c0

(
1 + (�x)2

2!
+ (�x)4

4!
+ (�x)6

6!
+ (�x)8

8!
+ (�x)10

10!
+ · · ·

)
(30)

The expansion (29) coincides with the result of Abbasbandy,
2], exactly. It also coincides with Eq. (26) of [1], except for the
oefficients of (� x)6 and (� x)8 which have been affected in [1] by
ypos.

.2. Negative reaction orders n

Eq. (12), and consequently the exact solution (13) apply for all
= n + 1 > 0, i.e. for all n > −1. However, for m = 0 (i.e. n = −1), Eq. (13)

s well as the first integral (7) become infinite, as already men-
ioned in Section 2. This case requires a special approach and will
e considered separately at the end of the present section, after
he subsequent discussion of the apparent reaction order range
1 < n < 0.

he range − 1 < n < 0 (i.e. 0 < m < 1)

In the range of apparent reaction order −1 < n < 0 the exact

olution (13) reduces in several special cases to elementary tran-
cendental functions. Four of such cases (calculated with the aid of
athematica®) are collected in Table 1. The concentrations c0 at the

mpermeable wall as functions of the Thiele modulus � are plotted
or the cases included in Table 1 in Fig. 3.

−
−
−
T
�

ig. 3. Plot of the concentration c0 at the impermeable wall as function of the Thiele
odulus � for four negative values of the reaction order in the range −1 < n < 0.

A comparison of Fig. 3 (where −1 < n < 0) to Fig. 1 (where n > 0)
ndicates dramatic differences which can be described as follows:

(i) In the range −1 < n < 0 the surface concentration c0 is no longer
a monotonous function of the Thiele modulus �.

(ii) For every reaction order in the range −1 < n < 0, there exists a
maximum value �max (n) so that the boundary value problem
(5), (6) does not admit solutions for � > �max (n).

(iii) The surface concentration c0 reaches at � > �max (n) a critical
value c0,crit (n) which represents a turning point of the function
c0 = c0 (�; n).

(iv) The curves c0 = c0(�; n) terminate at some finite values �*(n)
of �. The values of �*(n) are given by Eq. (20).

(v) While in the ranges 0 ≤ � < �*(n) the solutions of the bound-
ary value problem (5) and (6) are unique, in the ranges
�*(n) ≤ � ≤ �max(n) two solution branches (dual solutions)
occur.

(vi) At � = �*(n), one of the dual solutions corresponds to the sur-
face concentration c0 = 0 (lower branch) and the another to
c0 = c*(n) (upper branch), respectively. In the former case the
concentration distribution is given by Eq. (19).

vii) At the turning point (�, c0) = (�max, c0,crit), the dual solutions
become coincident.

For the reaction orders selected in Table 1 and Fig. 3, the above
haracteristic quantities are given in Table 2.

he case n = −1 (i.e. m = 0)
1/2 2/3 = 0.67 3/4 = 0.75 0.942809 1/4 = 0.25 x4/3

2/3
√

5/6 = 0.49 0.870468 0.870131 0.318629 x6/5

3/4 2
√

2/7 = 0.40 0.913653 0.839768 0.348775 x8/7

he concentration distributions c(x) of the last column correspond to c0 = 0 and
= �*(n).
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ig. 4. Plot of the concentration c0 as function of � for n = −1. There exist dual
olutions only. Their domain of existence is 0 ≤ � ≤ �max(−1) = 0.765152. The crit-
cal value of c0, where the lower and upper branch solutions become coincident is

0,max = 0.425695.

The first boundary condition (6) and Eq. (31) give for the inte-
ration constant K the value K = −�2 ln c0. Thus, Eq. (31) becomes

dc

dx

)2

= 2�2 ln
[

c(x)
c0

]
(32)

nd yields the exact solution of the problem in the implicit analyt-
cal form

= c0

�
√

2

∫ c/c0

1

du√
ln u

= c0

i �

√
�

2
erf

[
i

√
ln

(
c

c0

)]
(33)

In Eq. (33), erf(z) denotes the error function [4].
The concentration c0 at the impermeable boundary can be

etermined from the exact solution (33) and the second boundary
ondition (6) as solution of the transcendental equation

c0

i �

√
�

2
erf

[
i

√
ln

(
1
c0

)]
= 1 (34)

The dimensionless concentration gradient dc/dx|x=1 ≡ c′(1) at
he boundary with prescribed concentration is obtained by differ-
ntiation of Eq. (33) in the form

′(1) = �
√

−2 ln c0 (35)

The concentration c0 at the impermeable wall as function of the
hiele modulus � is plotted according to Eq. (34) in Fig. 4.

The curve c0 = c0(�; −1) of Fig. 4 bears a close resemblance
o the curves of Fig. 3 corresponding to reaction orders in the
ange −1 < n < 0. An essential difference, however, is that its lower
ranch does not terminate at a finite value �* of the Thiele mod-
lus, but �*(−1) → 0 as c0 → 0. Accordingly, for n = −1 no unique
olutions exist al all, except at the critical value c0,max = 0.425695
f c0, where the lower and upper branch solutions become coin-
ident. The domain of existence of the dual solution in this case

s 0 ≤ � ≤ �max(−1) = 0.765152. The shape of concentration profiles
= c(x;�;n) is qualitatively similar in the whole range −1 ≤ n < 0 to
hose corresponding to n ≥ 0, namely, for any specified value of � in
he domain of existence, the local concentration increases from c0
o the value 1 monotonously as x increases from 0 to 1 (see Fig. 2).

[

[
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. Summary and conclusions

A one-dimensional nonlinear model of reaction and diffusion
n porous catalysts has been revisited in this paper. One of the
oundaries of the porous slab is impermeable and the other one is
eld at constant concentration. The exact analytical solution for the
teady concentration field has been given in terms of Gauss’ hyper-
eometric function. Two quantities of engineering interest, namely
he (dimensionless) concentration c0 at the impermeable bound-
ry x = 0, and the concentration gradient c′(1) at boundary x = 1
ith prescribed concentration, have been calculated and discussed

s functions of the reaction order n ≥ −1 and the Thiele modulus
≥ 0 in detail. The former quantity provides information about

he tightness performance of the respective boundary in satisfying
he impermeability requirement. The concentration gradient c′(1)
n the other hand, specifies the mass flux of the reactant supply,
equired to maintain the steady reaction–diffusion regime during
he (reactant consuming) chemical reaction. The main results of the
aper can be summarized as follows:

1) The steady concentration c = c(x) increases monotonously from
c0 to 1 for all n ≥ −1 and � ≥ 0 as the transversal coordinate
x increases from 0 to 1. However, the domain of existence of
these solutions in the parameter plane (c0, �), as well as their
uniqueness, depend essentially on whether the reaction order
is negative, −1 ≤ n < 0 or nonnegative, n ≥ 0.

2) In the range n ≥ 0, the solutions c = c(x) are unique. When n ≥ 1,
one has c0 /= 0 and the unique solution exists for all 0 ≤ � < ∞.
However, in the range 0 ≤ n < 1 of the reaction order, the solution
c = c(x) does exist only in a finite interval of values 0 ≤ � ≤ �*(n)
of the Thiele modulus. Within this interval c0 /= 0, but at its
upper bound � = �*(n), one has c0 = 0 (see Fig. 1).

3) In the range −1 < n < 0 of the reaction order, the solutions c = c(x)
are unique only for the values of the Thiele modulus in the inter-
val 0 ≤ � < �*(n). In the finite range �*(n) ≤ � ≤ �max(n) above
of �*(n), two solution branches (dual solutions) occur, and for
� > �max(n) no solutions exist at all. The surface concentration
c0 reaches at � = �max(n) a critical value c0,crit(n) which repre-
sents a turning point of the function c0 = c0(�;n), where the dual
solutions become coincident (see Fig. 3).

4) For n = −1 no unique solutions exist al all, except at the crit-
ical value c0,max = 0.425695 of c0, where the lower and upper
branch solutions become coincident. The domain of existence
of the dual solution in this case is 0 ≤ � ≤ �max(−1) = 0.765152
and �*(−1) → 0 as c0 → 0 (see Fig. 4).

We may conclude that the exact analytical solution reported in
he present paper allows for a comprehensive description of the
asic physical features of the model considered.
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